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ABSTRACT

This work is carried out to the problem of the dynamic behavior of simply supported Rayleigh
beam driven by moving distributed load acting on variable bi-parametric elastic subgrade.
The velocity of the motion is assumed constant throughout. General solutions of the thick
beams are obtained by the generalized Galerkin’s method, Laplace transformation and
Convolution Theory for the cases of a load described by the Heaviside function. Expressions
for the structural parameters such as axial force, rotatory inertia correction factor, shear force
and foundation modulus are obtained and the results displayed in plotted curves.
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INTRODUCTION
Elastic structures ranging from bridges and highways to space-vehicle are constantly
acted upon by moving load (concentrated and distributed) and hence, the problem of
analyzing the flexural response of the elastic structures under moving masses. Several
investigators in the field of structural dynamics had worked on the reliable method for
the accurate determination of the response of the elastic structures when traversed by
heavy masses. In most of the studies available in literature, such as the work of Rao1,
Zheng et al.2, Fryba3 and Oni4. The scope has been limited to structural members having
uniform sections. The cases where the structure is non-uniform are scanty.
For practical study, in a non-uniform structure, the flexural rigidity and mass per unit
length of the beam becomes certain functions of the spatial coordinate x in the model
equation. Consequently, upon this the exact solution to the dynamical problem seems
impossible as the governing partial differential equation now has variable coefficients.
Pertinent among recent researchers when non-uniform structural members have been
subjected to heavy masses is the work of Oni5 who investigated the response of non-
uniform beam resting on elastic foundation to several moving masses. The deflection
of the non-uniform beam was calculated for several values of foundation moduli and
shown graphically as a function of time. 
Ogunyebi and Sunday6 investigated the response of non-uniform beam under tensile
stress resting on an elastic foundation. The solution to the fourth order partial
differential equation governing the problem was solved when the beam is traversed by
mobile distributed loads and from the analysis, response amplitudes of  both  moving
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force and moving mass problem decrease with increasing
foundation constant. Previous authors that have worked on 
non-uniform  beams  include Wu and Dai7. They considered
the dynamic responses of  multi-spam non-uniform beams
under moving loads using the transfer matrix method. The
dynamic behavior of multi-spam non-uniform beams
traversed by a moving load at constant and variable velocities
was considered by Dugush and Eisenberger8.
Abiala and Gbadeyan9 considered the dynamic behavior of a
non-uniform beam resting on a vaiable Winkler foundation
and traversed by a uniformly partially distributed moving load.
The elastic properties of the beam such as the flexural rigidity,
the mass diversity per unit length of the beam, as well as the
elastic foundation modulus parameter which are usually
assumed constants are hereby expressed as functions of the
spatial variables. Recently, Omolofe and Alimi10 presented the
problem of transverse motion of a non-uniform beam with
time- dependent boundary conditions when under the action
of travelling distributed masses on an elastic foundation using
the Mindlin and Goodman’s method.
In above studies, structural members are modeled as moving
distributed and concentrated loads on an elastic foundation.
A more practical situation where two-parameter elastic
foundation appears in the model equation has been
neglected. This may due to amount of mathematical
complexity involved in solving the governing equation. Thus,
this work is concerned with the flexural behavior of non-
uniform simply supported Rayleigh beam subjected to moving
distributed loads travailing on variable bi-parametric elastic
foundation at constant speed. Numerical analysis will be
presented for both moving distributed force and moving
distributed mass solutions.

MATERIALS AND METHODS
Mathematical formulation: The transverse vibration of simply
supported pre-stressed non-uniform Rayleigh beam resting on
variable Pasternak foundation and traversed by moving
distributed masses was governed by the fourth order partial
differential equation is given by:

2 2 2 42
* 0n n n n

02 2 2 2 2 2

V (x, t) V (x, t) V (x, t) V (x, t)
EJ(x) N (x) (x)R

x x x t x t

    
           

2 2 2
2

n k n2 2
MH(x ct) 2c c V (x, t) F (x)V (x, t) MH(x ct)

t x t x

   
           

(1)

In this system, we shall take variable Pasternak elastic
foundation  to be of the form:k nF (x)V (x, t)
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where S (x) is the variable foundation stiffness and K (x) is the
variable shear modulus. 
An example of variable Pasternak elastic foundation in Dugush
and Eisenberger8 and was adopted. J (x) and µ* (x)  are taken
to be of the form:
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where Jo and µ0 are constants.
At this juncture, the boundary conditions for the dynamical
system were arbitrary and the initial conditions without any
loss of generality are taken to be:
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Substituting Eq. 2, 3 and 4 into Eq. 1, one obtain
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Equation 6 is the fourth order partial differential equation
governing the motion of a non-uniform pre-stressed simply
supported Rayleigh beam resting on a variable bi-parametric
elastic foundation at uniform velocity.

Methodology: The fourth order partial differential Eq. 6 has
both singular and variable coefficients. Evidently, a closed
form solution does not exist. Therefore, an elegant method of
solution was given to solve the differential equation of motion.
The approach involves expressing the Heaviside function as a
Fourier Sine series and then reducing the modified form of the
fourth order partial differential equation above using the
method of Generalized Galerkin extensively discussed in Oni
and Ogunyebi11. To this end, the coupled fourth order partial
differential Eq. 6 was then solved by Struble’s technique. 
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The versatile technique requires that the solution of Eq. 6 takes
the form:

(7)n m m
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where, Um (x) was chosen such that the desired boundary
conditions were fulfilled.
Equation 7 when substituted into Eq. 6 and after further
simplification yields
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In order to determine Zm (t), it was required that the
expression on the left hand side of Eq. 8 be orthogonal to
function Uk (t). Thus,
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An appropriate selection of functions for beam problems are
beam mode shapes. Thus, the mth normal mode of vibration
of a non-uniform Rayleigh beam
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was chosen such that the boundary conditions were satisfied.
In Eq. 10, 8m is the mode frequency, Am,Bm,Cm are constants
which are obtained by substituting (10) into the appropriate
boundary conditions.
Neglecting the summation sign in Eq. 9 and assumed that the
beam has a simple supports at both ends i.e., x = 0 and x = L.
Thus, from Eq. 10, Eq. 7 becomes
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Using Eq. 13 in 12 and  after  some  arrangements,  one
obtains
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Equation 14 represents the transformed equation governing
non-uniform finite simply supported Rayleigh beam resting on
variable bi-parametric subgrade under moving distributed
masses. Consequently, two cases of Eq. 14 were considered

namely: The moving distributed force and the moving
distributed mass problem.

Pre-stressed simply supported rayleigh beam traversed by
distributed forces: In this section, only the force effect of the
moving distributed loads was considered by setting 80 = 0. To
this end, Eq. 14 reduces to

(16)2 m
m mf m *

0

PL m ct
Z (t) V (t) ( 1) cos

m F L

          


Where:
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m
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and

(18)

0 2 2
*
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To this end, a modification of Struble’s asymptotic technique
described in Oni and Ogunyebi11 was employed in conjunction
with Laplace and convolution theory to give an expression for 
Zm(t).
which on inversion yields,

(19)
n

m mf mf
n * 2 2

m 1 0 mf m mf

cosq t cos t (1 cos t)PL sinmx
V (x, t)

m F q L

    
        


Equation 19 is the transverse response of moving distributed
force of a simply supported non-uniform Rayleigh beam
resting on variable bi-parametric elastic foundation at
constant speed. 

Prestressed simply supported rayleigh beam traversed by
distributed masses: When 80 …0 in Eq. 14, the solution to the
entire equation was required where both force effect and
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mass effects are considered. This is called moving distributed
mass problem and by the asymptotic method due to Struble,
it is straight forward to show that 

(20)
2

2 m
m mm m2 *

0

d PL m ct
Z (t) Z (t) ( 1) cos

dt m F L

          

Where:

(21)
2 2 2

2
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E c m
1 L

16F

  
      

   

is called the modified frequency corresponding to the
frequency of the free system due to the presence of the
moving mass. 
Solving Eq. 20 in conjunction with the initial conditions gives
an expression for Zm(t) which when inverted gives

 (22)
2n

j2 m mm
n * 2 2

m 1 0 mm m mm

(1 cos t)E L g cosq t cos t sinmx
V (x, t)

m F q L
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

Equation 23 represents the transverse displacement response
of moving distributed mass at constant velocity of a simply
supported non-uniform Rayleigh beam resting on variable bi-
parametric elastic foundation.

Comments on closed form solution: This section seeks to
establish the conditions under which the dynamical system
grows without bound. Therefore, it was pertinent to discuss
the issue of resonance as design engineers in the area of
constructions engineering find this useful.
Equation 19 clearly shows that the finite non-uniform simply
supported Rayleigh beam resting on a variable bi-parametric
elastic subgrade and traversed by a moving distributed force
reaches a state of resonance whenever

(23)mf

m c

L


 

while Eq. 22 shows that the same beam under the action of
moving mass will experience resonance effect whenever 

(24)mm

m c

L


 

from Eq. 21
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which implies

(26)
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It can be seen that, for the same natural frequency, the critical
speed for the system consisting of a finite non-uniform simply
supported Rayleigh beam resting on a variable bi-parametric
elastic foundation and traversed by moving distributed force
with uniform speed is greater than that of moving distributed
mass problem. Thus for the same natural frequency, resonance
is reached earlier in the moving distributed mass system than
in the moving distributed force system11.

RESULTS
To illustrate the foregoing analysis, the finite non-uniform
simply supported Rayleigh beam resting on a variable bi-
parametric elastic foundation of length L = 12.192 m was
considered. Furthermore, homogenous beam of modulus of
elasticity E = 3.1×1010 N mG2, the moment of inertia J =
2.87698×10G3 m4, velocity 8.123 m secG1 and the mass per
unit length of the beam µ0 = 2758.291 kg mG1 are respectively
chosen. The results of the dynamic behaviour of the finite
simply supported non-uniform Rayleigh beam are presented
on the various graphs below.
Figure 1 and 2 displays the effects of axial force N on the
flexural vibrations of a non-uniform simply supported  uniform

Fig. 1: Deflection profile of a simply supported non-uniform
rayleigh beam on variable Pasternak foundation and
traversed  by moving distributed force for So = 3000,
Ko = 10000, Ro = 0.2 and various values of No
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Fig. 2: Displacement   response   of   a   simply  supported
non-uniform Rayleigh beam on variable Pasternak
foundation and traversed by moving distributed mass
for So = 3000, Eo = 0.5, Ko = 10000, Ro = 0.2 and
various values of No

Fig. 3: Transverse  displacement  of   a   simply   supported
non-uniform Rayleigh beam on variable Pasternak
foundation and traversed by moving distributed force
for N = 2000, Ko = 10000, So = 3000 and various values
of Ro

Rayleigh beam under the action of moving distributed forces
moving at constant velocity in both cases of moving
distributed force and moving distributed mass respectively.
The graphs show that the response amplitude decreases as
the value of the axial force increases.
Figure 3 and 4 shows the effect of rotatory inertia Ro on the
transverse displacement of the non-uniform simply supported
Rayleigh beam in both cases of moving distributed force and
moving distributed mass respectively. The curves show that
the response amplitude decreases as the value of the rotatory
inertia correction factor increases.

Fig. 4: Deflection profile of a simply supported non-uniform
Rayleigh beam on variable Pasternak foundation and
traversed by moving distributed mass for  N  =  2000,
Eo = 0.5, Ko = 10000, So = 3000 and various values of
Ro

Fig. 5: Displacement  response   of   a   simply   supported
non-uniform Rayleigh beam on variable Pasternak
foundation and traversed by moving distributed force
for N = 2000, So = 3000, Ro = 0.2 and various values of
Ko

Figure 5 and  6  displays  the  effects  of  foundation  stiffness
So on deflection amplitude of the non-uniform simply
supported Rayleigh beam transverse by moving distributed
force and moving distributed mass for So = 30000, N = 2000
and Ro = 0.2 respectively. It can be seen from the graphs that
the response amplitude decreases as the value of the So
increases.
Figure 7 and 8 displays the deflection of the shear modulus Ko
for the non-uniform Rayleigh beam transverse by moving
distributed force and moving distributed mass. As the value of
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Fig. 6: Transverse   displacement   of  a  simply  supported
non-uniform Rayleigh beam on variable Pasternak
foundation and traversed by moving distributed mass
for N = 2000, Eo = 0.5, So = 3000, Ro = 0.2 and various
values of Ko

Fig. 7: Deflection profile of a simply supported non-uniform
Rayleigh beam on variable Pasternak foundation and
traversed by moving distributed force for N  =  10000,
Ko = 10000, Ro = 0.2 and various values of So

Ko increases, the response amplitude of the beam for moving
distributed force and moving distributed mass decreases. 
Figure 9 displays the deflection profile of the mass ratio for the
non-uniform Rayleigh beam traversed by moving distributed
mass. As the value of E0 increases, response amplitude of the
beam for the moving distributed mass decreases.
Figure 10 compares the displacement curves of the moving
distributed force and moving distributed mass for a simply
supported non-uniform Rayleigh beam with Ko = 2000 N mG2.
N = 2000 N mG2, Ro = 0.2 and So = 30000 n  mG2.  Clearly,  the

Fig. 8: Displacement   response   of   a   simply  supported
non-uniform Rayleigh beam on variable Pasternak
foundation and traversed by moving distributed mass
for N = 10000, Eo = 0.5, Ko = 10000, Ro = 0.2 and
various values of So 

Fig. 9: Transverse   displacement   of  a  simply  supported
non-uniform Rayleigh beam on variable Pasternak
foundation and traversed by moving distributed mass
for N = 10000, So = 30000, Ko = 2000, Ro = 0.2 and
various values of Eo

response amplitude of a moving distributed mass was greater
than that of a moving distributed force pattern. 

DISCUSSION
Analytical solutions for the beam-type structural member
were obtained for the governing differential equation of
motion. Clearly, justification was highly achieved when this
study was correlated with what obtained in Oni4, Oni5,
Omolofe and Alimi10 and Oni and Ogunyebi11. Hence, this
study has authenticated its results with the presented
theoretical solution. Also, it was  established  that  resonance
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Fig. 10: Comparison of the displacement response of moving
of a Simply supported non-uniform Rayleigh beam on
variable Pasternak foundation and traversed by
moving distributed load for fixed values of N = 10000,
So = 30000, Ko = 2000, Ro = 0.2 and of Eo = 0.5

was reached earlier in the moving distributed mass system
than in the moving distributed force system and this new
findings for the simply supported Rayleigh beam problem can
be extended to all variants of boundary conditions for both
one-dimensional and two-dimensional problems in the
dynamics of structures under moving loads.

CONCLUSION
This work presents the dynamic analysis of finite simply
supported non-uniform Rayleigh beam  resting  on  variable
bi-parametric elastic subgrade under the action of moving
distributed loads. The fourth order partial differential equation
governing the system is reduced to second order coupled
ordinary differential equations called Galerkin equations are
solved by expression Heaviside function in series form, a
modification of Struble’s asymptotic technique and
convolution theory. As the axial force, foundation stiffness,
shear modulus and rotatory inertia correction factor increases,
the response amplitude of the simply supported uniform
Rayleigh beam decreases. Also, for fixed value  of  axial  force,

foundation stiffness, shear modulus and rotatory inertia
correction factor, the response amplitude for the moving
distributed mass problem is greater than that of the moving
distributed force as displayed in plotted curves.
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