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ABSTRACT

One of the major assumptions underlying the use of Ordinary Least Square (OLS) in regression
analysis is that the variance of the error is constant over time. This is referred to as
homoscedasticity. This assumption does not usually hold when dealing with financial series
as financial series do exhibit heteroscedasticity. This problem led to the development of
heteroscedastic models. The purpose of this study was to propose a new error innovation
distribution in estimating some volatility models. A new error innovation distribution is
known as Exponentiated Skewed Student-t Distribution (ESSTD). These were compared with
other error distributions with an empirical dataset of daily returns from Standard and Poor five
hundred (S&P500) index return to validate the best fit and forecasting performance in terms
of models and error innovation distributions. The stocks showed evidence of stationarity with
the Augmented Dickey-Fuller (ADF) Statistic while ARCH effect statistic using Lagrange
Multiplier shows proof of ARCH impact. The estimate of the volatility models was significant
at 1 and 5% p-values for the error innovation distributions. The Akaike Information Criteria
(AIC) show that the new error distributions outperformed in terms of fitness on GARCH (1,1),
GJR-GARCH (1,1), EGARCH (1,1) and TGARCH (1,1) whereas APARCH (1,1) model with SGED
outperformed the new error innovation distribution however in prediction performance, the
new error innovation distribution shows the small values RMSE.
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INTRODUCTION
Error distribution is one of the very important techniques in estimating the parameters
of any volatility models which was why Engle1 planned to use the innovation
distribution as a slip-up distribution in estimating his proposed volatility model.
However, this error distribution, innovation distribution proposed by Engle1 has gained
additional ground within the estimation of the volatility models, followed by the scholar
t-distribution which was proposed by Bollerslev2. Moreover, so as to estimate the
parameters of those heteroscedastic models, numerous distribution of error innovation
were proposed. This was often as a result of error innovation distribution and plays a
vital role in estimating the parameters of the heteroscedastic model3. There were six
kinds of error innovation distributions that have gained quality as mention higher than
in volatility modeling4,5 particularly distribution, skew distribution, student-t distribution,
skew student-t distribution, generalized error distribution and skew generalized error6.
Conjointly worked on the principle of parsimony in modeling statistic mistreatment
heteroscedasticity models mistreatment penurious volatility of ARCH, GARCH,  EGARCH
and TGARCH and Power ARCH (PARCH) models7. They also worked on modeling abrupt
shift in statistic mistreatment indicator variable on twelve volatility models.
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With the limitation found on the prevailing error innovation
distribution particularly the flexibility to capture extreme price,
serious caudated etc. prompted US to lead off the article by
proposing a brand new error distribution from the distribution
derived by Dikko and Agboola7 known as the Exponentiated
skew student-t distribution. This was to model some volatility
models and estimate their parameters victimization planned
error distribution and compare it in terms of fitness and
statement analysis victimization in normal and poor five
hundred (S&P500) index returns daily dataset. 
The ARCH model parameters were estimated using the normal
error distribution proposed by Engle1 for volatility models. The
model of GARCH2 also adopted this normal distribution for the
error innovation and used the distribution to estimate
volatility models not until the ground break in the estimation
that the error term does not followed a normal distribution
which make Bollerslev2 used the student-t distribution in the
estimation of volatility models. Generalized Error Distribution
(GED) was proposed for error innovation8 in estimating
EGARCH model. Even since there being extension of GARCH
models proposed by other researchers.
The objective of the study was to use new error innovation
distribution in modeling Standard and Poor 500 index return
data and also compare some volatility models and error
innovation distributions in terms of fitness and forecasting
performance.

MATERIALS AND METHODS 
Data for the study: The data for the study covered a period of
2007 to 2017 using daily closing price index.

Return series computation from price:

Let: (1)t
t

t 1
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where, Pt and Pt-1  are the present and previous closing prices
and rt  the continuously compounded return series which is
the natural logarithm of the simple gross return.

Stationary test: The return series statistic using Augmented
Dickey-Fuller test is illustrated with first differenced series
given as:
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Null hypothesis is illustrated as 0 1H : 1 

While, alternative hypothesis is:  and the statistic is1 1H : 1 
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P0 = 0, T is the sample size and  for each stock.1

If the calculated value of t is greater than t critical value then
the null hypothesis is rejected.

Test for heteroscedasticity effect: Lagrange multiplier test
proposed by Engle1 will be adopted in testing the presence of
heteroscedasticity in the data set. The test F statistic for testing 
"i = 0 (i = 1,...., m) in the linear regression:
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where, gt denote the error term, m is a pre-specified positive
integer and T is the sample size.
The null hypothesis is:
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The test statistic:
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ta

Some volatility models: The GARCH (p, q) model was stated
as follows:
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where,  and  for all i and j.i 0 
i 0 

The EGARCH (p, q) model was proposed by Nelson8, formulate
the volatility which is as follows:

(8)
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are the parameters of the model.0 i j, , ,   

Threshold Generalized Autoregressive Conditional
Heteroscedasticity (TGARCH) model.
Glosten et al.9 stated the model as:
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where, Nt-i is an indicator for negative gt-i that is Nt-i is 1 if gt-i <
0 and 0.

Model selection: Akaike Information Criteria (AIC,) is used in
model selection criteria which are given as:

(10)AIC 2ln(LL) 2p  

where, p is the number of parameters in the model and LL is
the maximized value of the likelihood function for the model.

C Forecasting performance

The Root Mean Squared Error (RMSE) statistic is used for model
forecasting. The Statistic is given as: 
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where, n is the number of steps ahead, T is the sample size, 
 and  are the square root of the conditional forecastedt̂ t

volatility and the realized volatility respectively. 

C Maximum likelihood estimator 

The following are the commonly used distributions for error
innovation in volatility modeling. Generally, in volatility
modeling, the standardized form of the distribution is usually
used10.

Skewed normal distribution:
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where, g is the location, σ is the scale and α denotes the shape
parameter.

Standardized skewed student t-distribution:
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where, v is the shape parameter with 2 < v < 4 and λ is the
Skewedness parameters with ! 1< λ < 1, μ  and σ2 are the
mean and variance of the Skewed student t-distribution.
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Standardized skewed generalized error distribution:
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Error innovation of Exponentiated Skewed student-t
Distribution (ESSTD):
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RESULTS AND DISCUSSION
Descriptive statistic: Descriptive statistic of the S&P500 index
returns data were used. The obtained statistics are shown in
Table 1 that the mean return series were negative, positive
Skewed and high kurtosis for S&P500 index returns. The return 
was  not  normally distributed since the Jarque-Bera statistic
p-value is less than 1%. This finding agreed with the previous
work11 of non-normally distributed return series.

Table 1: Summary statistics of standard and poor 500 index return
Statistics S&P500
Mean -0.0002
Std. Dev. 0.0129
Skewedness 0.3357
Kurtosis 13.485
Jarque-Bera 12008.37
Probability 0.001
Observations 2610

Table 2: Stationarity test using ADF of S&P500 index returns
Stocks ADF test statistic Comment
S&P500 -12.36540 Stationary at level without transformation
1% critical = -3.432219

Table 3: Lagrange multiplier test for ARCH effect
ARCH effect F-Statistic p-value

S&P500 index returns Lag 1-2 F(2,2390) = 243.93 0.001
Lag 1-5 F(5,2384) = 150.66 0.001
Lag 1-10 F(10,2374)= 93.623 0.001

Augmented dickey fuller test for stationarity: The statistic of
the ADF shows that the series  was  stationary  since  the  ADF
statistic is greater than 1% critical level. Therefore, there was
no need for transformation (Table 2). This finding agreed with
the previous studies of Dikko et al.11 and Agboola et al.12 using
the ADF test in testing for the stationarity of the return series. 

Autoregressive conditional heteroscedasticity (ARCH) effect
test: In order to estimate the volatility model an ARCH effect
test were carried out to test for the presence in the series
using the Lagrange Multiplier F Statistic. The result showed
the   presence   of  ARCH  effect  with  p-value  level  than  1%
(Table 3). This finding agreed with the works1,2,6 using
Lagrange Multiplier in testing the presence of ARCH effect
which shows significant effect.

Parameters estimation with error innovation distributions
on standard and poor 500 (S&P500) index returns: Table 4
and 5 present the parameter estimates of studied volatility
models using five (5) error innovation distributions namely;
skewed  normal,   skewed    distribution,    skewed    student-t
distribution, skewed generalized error distribution and the
proposed Exponentiated skewed student-t distribution using
returns from S&P500. The Table 4 shows the estimate using
the new proposed error distribution and Table 5 shows the
estimate using the existing error distributions. The result
shows that the returns exhibit volatility clustering. This was
concluded because the GARCH term was significant in most of
the models considered (p<0.05) and (p<0.01). This finding is
in line with the work Dikko et al.11 and Agboola et al.12.

Fitness and model selection of some volatility models on
standard and poor 500 (S&P500) index returns: Table 6
shows the result of the fitness and model selection using AIC.
The GJR-GARCH (1,1), EGARCH (1,1) and TGARCH (1,1) with
error innovation distribution of ESSTD outperformed better
than the others distributions of error innovation and SGED
outperformed others error distribution including proposed
error distribution on APARCH (1,1) model. The proposed error
innovation ESSTD was found to outperform on four volatility

Table 4: Parameters estimation with new error innovation distribution of standard and poor 500 (S&P500) index returns 
Error

Models distribution ω α1 β1 γ1 δ Skewed Shape(u)
GARCH (1,1) ESSTD 3.817×10-07** 1.225×10-02 -6.788×10-03** 6.736×10-02** 4.3610**

GJR-GARCH (1,1) ESSTD 0.06105** 0.00875 0.001961** 0.1000* 0.5530 4.4560**

EGARCH (1,1) ESSTD 0.50076** 0.10069** 0.08105 0.06155* 0.2698** 1.2651*

TGARCH (1,1) ESSTD 0.00946* 0.00451** 0.1306 -0.0725 1.7040 1.3170*

APARCH (1,1) ESSTD 3.792x10-07 0.10000** 0.1021** 0.0995 0.08976 0.03855 7.6382**

p-value significant at: 5%*, 1%** and 10%***
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Table 5: Parameter estimation of some volatility model with three (3) error innovation distributions on S&P500 index returns
Models Error ω α1 β1 γ1 δ Skewed Shape
GARCH (1,1) SSTD 1.781×10-06*** 1.301×10-01*** 8.671×10-01 1.099*** 5.018***

SNORM 2.254×10-06*** 1.169×10-01 *** 8.656×10-01 1.172 **

SGED 2.091×1006 *** 1.259×10-01 *** 8.624×10-01 *** 1.052*** 1.173***

GJR-GARCH (1,1) SSTD 0.00002*** 0.2492*** 0.8845*** -0.2861** 1.1651** 5.5185**

SNORM 0.00002*** 0.2007*** 0.8944*** -0.2300*** 1.2036***

SGED 0.000002*** 0.2360*** 0.8827*** -0.2689*** 1.1244*** 1.2603***

EGARCH (1,1) SSTD -0.21282*** 0.21282** 0.97706** -0.12412** 1.1764** 5.5422**

SNORM -0.23031*** 0.17975** 0.97431** 0.11866** 1.22533**

SGED -0.24797** 0.20479*** 0.97327*** 0.12999** 1.14487** 1.27319***

TGARCH (1,1) SSTD 0.000002 0.13037 0.86715** 1.0991** 5.0139
SNORM 0.000002 0.11690* 0.86596*** 1.17207**

SGED 0.000002 0.12573 0.86271*** 1.0524-*** 1.17286***

APARCH (1,1) SSTD 0.00002 0.05980 0.86703 -0.9996* 2.000*** 1.1489** 5.7842**

SNORM 0.000002 0.05116 0.8780*** -0.9959** 2.000** 1.2005**

SGED 0.000002 0.06014 0.8651** 0.9984* 2.000** 1.1141** 1.2524**

p-value significant at: 5%*, 1%** and 10%***

Table 6: Fitness and model selection using AIC on S&P500 index returns
Models Error LL AIC
GARCH (1,1) SSTD 8456.201 -6.4752

SNORM 8393.955 -6.4283
SGED 8476.708 -6.4909
ESSTD 148400.191 -13.3623

GJR-GARCH (1,1) SSTD 8521.264 -6.5243
SNORM 8464.151 -6.4813
SGED 8531.827 -6.5324
ESSTD 447704.856 -14.0237

EGARCH (1,1) SSTD 8530.299 -6.5313
SNORM 8472.271 -6.4876
SGED 8538.083 -6.5372
ESSTD 47009.9981 -9.5162

TGARCH (1,1) SSTD 8456.228 -6.4753
SNORM 8393.938 -6.4283
SGED 8476.710 -6.4910
ESSTD 42954.5434 -9.3357

APARCH (1,1) SSTD 8515.994 -6.5203
SNORM 8459.808 -6.4780
SGED 8528.098 -6.5296
ESSTD 14029.671 -5.0978

Bolded values are the highest value of likelihood function and the least value of
AIC

models as revealed by its least value of Akaike Information
Criteria (AIC) for the index returns.

Forecasting performance of estimated volatility models on
S&P500 index returns: The result showed that GARCH (1,1),
GJR-GARCH (1,1), EGARCH (1,1), TGARCH (1,1) and APARCH
(1,1) models performance in term of forecasting under the
new error innovation distribution (ESSTD) (Table 7). This
finding was in agreement  with  the  previous  study12

adopting the principle of parsimony showed that GARCH (1,1),
GJR-GARCH (1,1), EGARCH (1,1), TGARCH (1,1) outperformed
except in this study they did not conduct their study on
APACH model.

Table 7: Forecasting evaluation of some volatility models using standard and
poor 500 (S&P500) index returns

Models Error distributions RMSE
GARCH (1,1) SSTD 1.082302

SNORM 0.5294797
SGED 0.4134991
ESSTD 0.0000510

GJR-GARCH (1,1) SSTD 0.02316053
SNORM 0.2594925
SGED 0.1145864
ESSTD 0.0000536

EGARCH (1,1) SSTD 0.01463527
SNORM 0.3109253
SGED 0.09638982
ESSTD 0.0000057

TGARCH (1,1) SSTD 1.082566
SNORM 0.5224235
SGED 0.4016423
ESSTD 0.250047

APARCH (1,1) SSTD 0.009737621
SNORM 0.1412954
SGED 0.05158674
ESSTD 0.000611

Bolded values are the highest value of likelihood function

CONCLUSION
It was concluded that in this article, compared various error
innovation distributions with new error innovation
distribution in estimating the parameters of five (5) GARCH
models and its extension. The empirical result showed a
negative return in the mean, high kurtosis and positive
skewness and it was stationary without transformation. The
data also showed evidence of ARCH effect and the parameters
estimation showed most coefficients in the models were
significant at 1, 5 and 10%. From the results obtained showed
on model selection using the AIC, the ESSTD fitted better in
the GARCH, GJR-GARCH, EGARCH and TGARCH model while
SGED in fitness, the APARCH model outperformed compared
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to other error distributions while the forecasting evaluation
only showed that ESSTD outperformed the existing
distributions with least RSME.
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